Shift Register 1

A shift register takes a series of eight bits (1's or 0"s) and transfers them into eight discreet outputs. It uses only three pins, "Data", "Clock", and "Latch".

"Data" is either a 1 or a 0.

"Clock" pushes the data bit into the register. ("Klock" so we do not confuse the Arduino.) "Latch" transfers the internal bits onto the outputs.

	seg G	seg F	seg E	seg D	seg C	seg B	seg A	N/A
ZERO	0	1	1	1	1	1	1	0
ONE	0	0	0	1	1	1	0	0
тwo	1	0	1	1	0	1	1	0
THREE	1	0	0	1	1	1	1	0
FOUR	1	1	0	0	1	1	0	0
FIVE	1	1	0	1	1	0	1	0
SIX	1	1	1	1	1	0	1	0
SEVEN	0	0	0	0	1	1	1	0
EIGHT	1	1	1	1	1	1	1	0
NINE	1	1	0	1	1	1	1	0

etc. up to number NINE

Shift Register 1

