```
3/4/19
IR 4bit Receiver
int IRrx = 3;
int indicator = 13;
                            //The indicator will light when a valid
int Red = 4:
                            //signal is received.
int Yellow = 5;
int Green = 6;
int Blue = 7;
int startCount = 0;
int stopCount = 0;
int RedSig;
int YellowSig;
int GreenSig;
int BlueSig;
int checkSig;
                            //The checkSig will always be low, thus preventing
                            //a false reading on a constant HIGH.
void setup() {
  pinMode(IRrx,INPUT);
  pinMode(indicator,OUTPUT);
  pinMode (Red, OUTPUT);
 pinMode (Yellow, OUTPUT);
 pinMode (Green, OUTPUT);
  pinMode (Blue, OUTPUT);
}
void loop() {
  startCount = 0;
  stopCount = 0;
                                       //The IRrx is holding the output HIGH
  while(digitalRead(IRrx) == HIGH){
        digitalWrite(indicator,LOW);
                                       //until it receives a signal.
        delay(1);}
  while(digitalRead(IRrx) == LOW) {
                                        //This loop counts how long the
        startCount++;
                                        //start pulse is.
        delay(10);}
  if(startCount == 6){
    digitalWrite(indicator, HIGH);
    delay(10);
    RedSig = digitalRead(IRrx);
    delay(10);
    YellowSig = digitalRead(IRrx);
    delay(10);
    GreenSig = digitalRead(IRrx);
    delay(10);
    BlueSig = digitalRead(IRrx);
    delay(10);
    checkSig = digitalRead(IRrx);
    delay(3);
                                          //This is waiting for the beginning
  while(digitalRead(IRrx) == HIGH){
                                          //of the stop pulse.
        delay(1);}
  while(digitalRead(IRrx) == LOW) {
                                         //This loop counts how long the
        stopCount++;
                                         //stop pulse is.
        delay(10);}
   if(stopCount == 7){
      digitalWrite (Red, !RedSig);
                                         //The signals will be saved as the
      digitalWrite (Yellow, !YellowSig);
                                         //inverse of their state, so we use
      digitalWrite (Green, !GreenSig);
                                         //the exclamation mark to "invert"
      digitalWrite(Blue,!BlueSig);
                                         //the signal from LOW to HIGH.
      delay(500);
   }
}
```